OLED MODULE

MODULE NO. :

KSEOM09601-4 SERIES

Customer:

Approved by:

Approved by	Checked by	Prepared by

GENERAL SPECIFICATION

MODULE NO. :

CUSTOMER P/N:

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	$2014 / 08 / 20$

CONTENTS

1. FUNCTIONS \& FEATURES 2
2. MECHANICAL SPECIFICATIONS 2
3. EXTERNAL DIMENSIONS (unit: mm) 3
4. BLOCK DIAGRAM 4
5. PIN ASSIGNMENT 4
6. ABSOLUTE MAXIMUM RATINGS 5
7. ELECTRICAL CHARACTERISTICS 5
8. COMMANDS 8
9. FUNCTIONAL SPECIFICATION 12
10. MODULE ACCEPT QUALITY LEVEL (AQL) 14
11. RELIABILITY TEST. 15
12. QUALITY DESCRIPTION \& APPLICTION NOTE 15

1. FUNCTIONS \& FEATURES

H LCD TYPE:

\left.| MODULE MODEL | LCD TYPE | REMARK |
| :--- | :---: | :---: |
| | KSEOM09601B-4 | 0.96 " OLED Passive Matrix Blue |$\right]$

2. MECHANICAL SPECIFICATIONS

\& Module Size
H Viewing Area
\& Active Area
H Dot Pitch
H Dot Size
: 27.50 (L) x27.80 (W) x3.50Max (T) mm
$: 23.744(\mathrm{~L}) \times 12.864(\mathrm{~W}) \mathrm{mm}$
$: 21.744$ (L) x 10.864 (W) mm
$: 0.17$ (W) x 0.17 (H) mm
: $0.154(\mathrm{~W}) \times 0.154(\mathrm{H}) \mathrm{mm}$

3. EXTERNAL DIMENSIONS (\square unit: mm)

Version: 0

4. BLOCK DIAGRAM

5. PIN ASSIGNMENT

PIN	SYMBOL	Descriptions
1	GND	Ground of Logic Circuit
2	VDD	Power Supply for Logic
3	SCK	Serial clock input.
4	SDA	Serial data input.

6. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Logic	$\mathrm{V}_{D D}$	-0.3	4	V	1,2
Supply Voltage for Display	$\mathrm{V}_{C C}$	0	16	V	1,2
Supply Voltage for $D C / D C$	$V_{\text {SAT }}$	-0.3	5	V	1,2
Operating Temperature	$\mathrm{T}_{\text {OP }}$	-40	85	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40	85	${ }^{\circ} \mathrm{C}$	3
Life Time $\left(120 \mathrm{~cd} / \mathrm{m}^{2}\right)$		10,000	-	hour	4
Life Time $\left(80 \mathrm{~cd} / \mathrm{m}^{2}\right)$		30,000	-	hour	4
Life Time $\left(60 \mathrm{~cd} / \mathrm{m}^{2}\right)$		50,000	-	hour	4

Note 1: All the above voltages are on the basis of " $V_{S S}=0 \mathrm{~V}$ ".
Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics \& Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.
Note 3: The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be $80^{\circ} \mathrm{C}$.
Note 4: $\mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, 50 \%$ Checkerboard.
Software configuration follows Section 4.4 Initialization.
End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

7. ELECTRICAL CHARACTERISTICS

7.1. Optics Characteristics

Characteristics	Symbol	Conditions	Min	Typ	Max	Unit
Brightness (Vcc Supplied Externally)	L_{br}	Note 5	80	100	-	$\mathrm{cd} / \mathrm{m}^{2}$
Brightness ($V_{c c}$ Generated by Internal $D C / D C$)	$L_{\text {br }}$	Note 6	50	60	-	$\mathrm{cd} / \mathrm{mt}^{2}$
C.I.E. (Blue)	$\begin{aligned} & (x) \\ & (y) \end{aligned}$	C.I.E. 1931	$\begin{aligned} & 0.10 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.28 \end{aligned}$	
C.I.E. (Yellow)	$\begin{aligned} & (x) \\ & (y) \end{aligned}$	C.I.E. 1931	$\begin{aligned} & 0.43 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.53 \end{aligned}$	
Dark Room Contrast	CR		-	2000:1	-	
			-	Free	-	degree

* Optical measurement taken at $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V} \& 7.25 \mathrm{~V}$.

Software configuration follows Section 4.4 Initialization.

7.2. DC CHARACTERISTICS

Characteristics	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage for Logic	$\mathrm{V}_{D D}$		1.65	2.8	3.3	V
Supply Voltage for Display (Supplied Externally)	V_{\propto}	Note 5 Internal DC/DC Disable)	11.5	12.0	12.5	V
Supply Voltage for DC/DC	$V_{s s}$	Internal DC/DC Enable	3.5	-	4.2	V
Supply Voltage for Display (Generated by Internal DC/DC)	V_{C}	Note 6 (Interna/ $D C / D C$ Enable)	7.0	-	7.5	V
High Level Input	V_{IH}	$\mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}, 3.3 \mathrm{MHz}$	$0.8 \times \mathrm{V}_{\mathrm{DD}}$	-	V_{DD}	V
Low Level Input	V_{IL}	$\mathrm{I}_{\text {OUt }}=100 \mu \mathrm{~A}, 3.3 \mathrm{MHz}$	0	-	$0.2 \times V_{D D}$	V
High Level Output	V_{OH}	$\mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}, 3.3 \mathrm{MHz}$	$0.9 \times \mathrm{V}_{\mathrm{DD}}$	-	$V_{D D}$	V
Low Level Output	V OL	$\mathrm{I}_{\text {OUt }}=100 \mu \mathrm{~A}, 3.3 \mathrm{MHz}$	0	-	$0.1 \times \mathrm{V}_{\text {D }}$	V
Operating Current for V_{DD}	I_{DD}		-	180	300	$\mu \mathrm{A}$
Operating Current for V_{\propto} (V_{\propto} Supplied Externally)	I_{CC}	Note 7	-	12.3	16	mA
Operating Current for $V_{\text {MIT }}$ (V_{α} Generated by Intemal DC/DC)	$I_{\text {MuT }}$	Note 8	-	21	28.0	$m A$
Sleep Mode Current for V_{DD}	IDD, SLEEP		-	1	5	$\mu \mathrm{A}$
Sleep Mode Current for V_{CC}	ICC, SLEEP		-	2	10	$\mu \mathrm{A}$

Note 5 \& 6: Brightness ($\mathrm{L}_{b r}$) and Supply Voltage for Display (V_{\propto}) are subject to the change of the panel characteristics and the customer's request.
Note 7: $\quad V_{D D}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}, 100 \%$ Display Area Turn on.
Note 8: $\quad V_{D D}=2.8 \mathrm{~V}, V_{C C}=7.25 \mathrm{~V}, 100 \%$ Display Area Turn on.

* Software configuration follows Section 4.4 Initialization.

7.3.AC CHARACTERISTICS

$1 \mathrm{I}^{2} \mathrm{C}$ Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	2.5	-	$\mu \mathrm{s}$
thstart	Start Condition Hold Time	0.6	-	$\mu \mathrm{s}$
$t_{\text {HD }}$	Data Hold Time (for "SDAout" Pin)	0	-	ns
	Data Hold Time (for "SDA ${ }_{\text {IN }}$ " Pin)	300		
$\mathrm{t}_{\text {SO }}$	Data Setup Time	100	-	ns
$\mathrm{t}_{\text {SSTART }}$	Start Condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Stop }}$	Stop Condition Setup Time	0.6	-	$\mu \mathrm{s}$
t_{R}	Rise Time for Data and Clock Pin		300	ns
t_{F}	Fall Time for Data and Clock Pin		300	ns
$\mathrm{t}_{\text {IDLE }}$	Idle Time before a New Transmission can Start	1.3	-	$\mu \mathrm{s}$

${ }^{*}\left(\mathrm{~V}_{D D}-\mathrm{V}_{S S}=1.65 \mathrm{~V}\right.$ to $\left.3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

8. COMMANDS

$(\mathrm{D} / \mathrm{C} \#=0, \mathrm{R} / \mathrm{W} \#(\mathrm{WR} \#)=0, \mathrm{E}(\mathrm{RD} \#=1)$ unless specific setting is stated)

1. Fundamental Command Table											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	$\begin{array}{\|l\|} \hline 81 \\ A[7: 0] \end{array}$	$\begin{gathered} 1 \\ \mathrm{~A}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$	Set Contrast Control	Double byte command to select 1 out of 256 contrast steps. Contrast increases as the value increases. (RESET $=7 \mathrm{Fh}$)
0	A4/A5	1	0	1	0	0	1	0	X_{0}	Entire Display ON	$\mathrm{A} 4 \mathrm{~h}, \mathrm{X}_{0}=0 \mathrm{~b}$: Resume to RAM content display (RESET) Output follows RAM content A.h, $\mathrm{X}_{0}=1 \mathrm{~b}$: Entire display ON Output ignores RAM content
0	A6/A7	1	0	1	0	0	1	1	X_{0}	Set Normal/Inverse Display	A6h, X[0]=0b: Normal display (RESET) 0 in RAM: OFF in display panel 1 in RAM: ON in display panel A7h, X[0]=1b: Inverse display 0 in RAM: ON in display panel 1 in RAM: OFF in display panel
0	$\begin{aligned} & \mathrm{AE} \\ & \mathrm{AF} \end{aligned}$	1	0	1	0	1	1	1	X_{0}	Set Display ON/OFF	$\begin{aligned} & \text { AEh, X[0]=0b:Display OFF (sleep mode) } \\ & \text { (RESET) } \\ & \text { AFh X[0]=1b-Display ON in normal mode } \end{aligned}$

2. Scrolling Command Table												
D/C\#Hex		D7	D6	D5 D4		D3	D2	D1	D0	Command	Description	
0	26/27	0	0	1	0	0	1	1	X_{0}	Continuous	26h, X[0] $=0$, Right Horizor	Scroll
0	A[7:0]	0	0	0	0	0	0	0	0	Horizontal Scroll	27h, X[0]=1, Left Horizonta	croll
0	B[2:0]	*	*	*	*	*	B_{2}	B_{1}	B_{0}	Setup	(Horizontal scroll by 1 c	mn)
0	C[2:0]	*	*	*	*	*	C_{2}	C_{1}	C_{0}		A[7:0] : Dummy byte (S	as 00 h)
0	[2:0]	*	*	*	*	*	D_{2}	D_{1}	D_{0}		$\mathrm{B}[2: 0]$: Define start pag	ddress
0	E[7:0]	0	0	0	0	0	${ }_{0}$	${ }_{0}$	0		000 b - PAGE0 011 b	PAGE3 110 b - PAGE6
0	F[7:0]	1	1	1	1	1	1	1	1		0016 - PAGE1 100 b	PAGE4 111 b - PAGE7
											010b-PAGE2 101 b	PAGE5
											$C[2: 0]$: Set time interval terms of frame	tween each scroll step in uency
											000b-5 frames	100b-3 frames
											001b-64 frames	101b-4 frames
											010b - 128 frames	110b-25 frame
											011b-256 frames	111b-2 frame
											$D[2: 0]$: Define end page	dress
											000 b - PAGE0 011 b	PAGE3 110 b - PAGE6
											001 b - PAGE1 100b	PAGE4 111 b - PAGE7 7
											010 b - PAGE2 101 b	PAGE5
											The value of $D[2$	must be larger or equal
												s00h)
											F[7:0]: Dummy byte (Se	FFh)

Product Specification

Product Specification

3. Addressing Setting Command Table											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	00~0F	0	0	0	0	X_{3}	X_{2}	X_{1}	X_{0}	Set Lower Column Start Address for Page Addressing Mode	Set the lower mibble of the columin start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000 b after RESET. Note ${ }^{11}$ This command is only for page addressing mode
0	10~1F	0	0	0	1	X_{5}	X_{2}	X_{1}	X_{0}	Set Higher Column Start Address for Page Addressing Mode	Set the higher nibble of the column start address egister for Page Addressing Mode using X[3:0] as data bits. The initial display line register is feset to 0000b after RESET. Vote ${ }^{11}$ This command is only for page addressing mode
0	$\begin{aligned} & 20 \\ & A[1: 0] \end{aligned}$	0	0	1	0	0	0	$\begin{gathered} 0 \\ A_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{0} \end{gathered}$	Set Memory Addressing Mode	$\begin{aligned} & A[1: 0]=00 \mathrm{~b}, \text { Horizontal Addressing Mode } \\ & A[1: 0]=01 \mathrm{~b}, \text { Vertical Addressing Mode } \\ & A[1: 0]=10 \mathrm{~b}, \text { Page Addressing Mode (RESET) } \\ & A[1: 0]=11 \mathrm{~b}, \text { Invalid } \end{aligned}$
0	$\begin{aligned} & 21 \\ & A[6: 0] \\ & B[6: 0] \end{aligned}$	$\begin{aligned} & 0 \\ & * \\ & * \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \\ \mathrm{~B}_{6} \end{gathered}$	$\begin{gathered} 1 \\ A_{5} \\ B_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{4} \\ \mathrm{~B}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{3} \\ \mathrm{~B}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \end{gathered}$	$\begin{gathered} 0 \\ A_{1} \\ B_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \\ \mathrm{~B}_{0} \end{gathered}$	Set Column Address	Setup column start and end address A[6:0] : Column start address, range : 0-127d, (RESET=0d) $B[6: 0]$: Column end address, range : $0-127 \mathrm{~d}$, (RESET $=127 \mathrm{~d}$) Note ${ }^{1)}$ This command is only for horizontal or vertical eddressing mode.

3. Addressing Setting Command Table											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
b	$\begin{aligned} & 22 \\ & A[2: 0] \\ & B[2: 0] \end{aligned}$	$\begin{aligned} & 0 \\ & * \end{aligned}$	0	*	0	0	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \end{gathered}$	$\begin{gathered} 1 \\ A_{1} \\ B_{1} \end{gathered}$	$\begin{gathered} 0 \\ A_{0} \\ B_{0} \end{gathered}$	Set Page Address	Setup page start and end address A[2:0] : Page start Address, range : 0-7d, $(\text { RESET }=0 \mathrm{~d})$ $B[2: 0]$: Page end Address, range : 0-7d, $(\text { RESET }=7 \mathrm{~d})$ Note (1) This commond is only for horizontal or vertical eddressing mode.
0	B0~B7	1	0	1	1	0	X_{2}	X_{1}	X_{0}	Set Page Start Address for Page Addressing Mode	Set GDDRAM Page Start Address (PAGE0~PAGE7) for Page Addressing Mode asing X[2:0]. Note ${ }^{11}$ This command is only for page addressing mode

Product Specification

4. Ha	rdware									nd Tabl	
D/C=	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	$40 \sim 7 \mathrm{~F}$	0	1	X_{5}	X_{4}	X_{5}	X_{2}	X_{1}	X_{0}	Set Display Start Line	Set display RAM display start live register from $0-63$ using $\mathrm{X}_{3} \mathrm{X}_{3} \mathrm{X}_{3} \mathrm{X}_{1} \mathrm{X}_{0}$. Display start line register is reset to 000000 b during RESET.
0	A0/A1	1	0	1	0	0	0	0	X_{0}	Set Segment Re-map	$\mathrm{A} 0 \mathrm{~h}, \mathrm{X}[0]=0 \mathrm{~b}$: column address 0 is mapped to SEG0 (RESET) Alh, $\mathrm{X}[0]=1 \mathrm{~b}$: column address 127 is mapped to SEGO
$\frac{p}{9}$	$\begin{aligned} & A .8 \\ & A[5: 0] \end{aligned}$	1	${ }^{0}$	$\begin{gathered} 1 \\ A_{5} \end{gathered}$	$\begin{gathered} 0 \\ A_{4} \end{gathered}$	$\begin{gathered} 1 \\ A_{3} \end{gathered}$	$\begin{gathered} 0 \\ A_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{0} \end{aligned}$	Set Multiplex Ratio	$\begin{aligned} & \text { Set MUX ratio to } \mathrm{N}+1 \mathrm{MUX} \\ & \mathrm{~N}=\mathrm{A}[5: 0] \text { : from } 16 \mathrm{MUX} \text { to } 64 \mathrm{MUX}, \text { RESET }= \\ & \quad 111111 \mathrm{~b} \text { (1.e. } 63 \mathrm{~d}, 64 \mathrm{MUX}) \end{aligned}$ A[5:0] from 0 to 14 are invalid entry.
9	CO/C8	1	1	0	0	X_{3}	0	0	0	Set COM Output Scan Direction	C0h, X[3]=0b: normal mode (RESET) Scan from $\text { COM } 0 \text { to } \mathrm{COM}[\mathrm{~N}-1]$ C8h, X[3]=lb: remapped mode. Scan from COM[N-1] to COMO Where N is the Multiplex ratio.
$\frac{p}{p}$	$\begin{array}{\|l} \hline \text { P3 } \\ A[5: 0] \end{array}$	1	$\begin{aligned} & 1 \\ & { }^{2} \end{aligned}$	$\begin{aligned} & 0 \\ & A_{s} \end{aligned}$	$\begin{gathered} 1 \\ A_{4} \end{gathered}$	$\begin{gathered} 0 \\ A_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{gathered} 1 \\ A_{1} \end{gathered}$	$\begin{gathered} 1 \\ A_{0} \end{gathered}$	Set Display Offset	Set vertical shift by COM from 0d~63d The value is reset to 00 h after RESET.
\bar{p}	$\begin{aligned} & \mathrm{PA} \\ & \mathrm{~A}[5: 4] \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & A_{s} \end{aligned}$	$\begin{gathered} 1 \\ A_{4} \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Set COM Pins } \\ & \text { Hardware } \\ & \text { Configuration } \end{aligned}$	A[4] $=0 \mathrm{~b}$, Sequential COM pin configuration A[4] $=1 \mathrm{~b}($ RESET), Altemative COM pin configuration $A[5]=0 b($ RESET $)$, Disable COM Left/Right remap $A[5]=1 b$, Enable COM Left/Rigit remap

Note

(1) "*" stands for "Don't care".

9. FUNCTIONAL SPECIFICATION

9.1 Commands

Refer to the Technical Manual for the SSD1306

9.2 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

9 2.1 Power up Sequence:

1. Power up $V_{D D}$
2. Send Display off command
3. Initialization
4. Clear Screen
5. Power up $V_{C O} / V_{\text {bAt }}$
6. Delay 100 ms (When V_{\propto} is stable)
7. Send Display on command
9.2.2 Power down Sequence:
8. Send Display off command
9. Power down $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{BAT}}$
10. Delay 100 ms
(When $\mathrm{V}_{\propto} / \mathrm{V}_{\mathrm{BAT}}$ is reach 0 and panel is completely discharges)
11. Power down $V_{D D}$

Note 13:

1) Since an ESD protection circuit is connected between $V_{D D}$ and $V_{C C}$ inside the driver $I C, V_{C C}$ becomes lower than $V_{D O}$ whenever $V_{D D}$ is $O N$ and $V_{C C}$ is $O F F$.
2) $V_{C C} / V_{B A T}$ should be kept float (disable) when it is OFF.
3) Power Pins ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{BAT}}$) can never be pulled to ground under any circumstance.
4) $V_{D D}$ should not be power down before $V_{C C} / V_{B A T}$ power down.

9.3 Reset Circuit

When RES\# input is low, the chip is initialized with the following status:

1. Display is OFF
2. 128×64 Display Mode
3. Normal segment and display data column and row address mapping (SEG0 mapped to columı address 00 h and COM0 mapped to row address 00h)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Contrast control register is set at 7Fh
9. Normal display mode (Equivalent to A4h command)

9.4 Actual Application Example

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.
<Power down Sequence>

<Entering Sleep Mode>

<Exiting Sleep Mode>

10. MODULE ACCEPT QUALITY LEVEL (AQL)

10.1 AQL Standard Value: Critical Defect =0.1, Major Defect=0.65; Minor Defect $=2.5$
10.2 Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level II

11. RELIABILITY TEST.

11.1 Contents of Reliability Tests

Item	Conditions	Criteria
High Temperature Operation	$70^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
Low Temperature Operation	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
High Temperature Storage	$85^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	The operational
Lunctions work.		
Low Temperature Storage	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
Hherg Temperature/Humidity Operation	$60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 120 \mathrm{hrs}$	

* The samples used for the above tests do not include polarizer.
* No moisture condensation is observed during tests.

11.2 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at $23 \pm 5^{\circ} \mathrm{C} ; 55 \pm 15 \% \mathrm{RH}$.

12. QUALITY DESCRIPTION \& APPLICTION NOTE

Please refer to "General Inspection Criteria" document.

