

AC/DC LED Controller

Features

- Efficiency> 85% when V_{AC} =110V, I_{LED} =100mA, V_{LED} =80V
- PWM switching control
- Operation with active power factor correction
- THD < 15% when V_{AC} =110V, I_{LED} =100mA, V_{LED} =80V
- Full protections: OTP/UVLO/OVP/OCP/LED open-/short-circuit
- Current setting accuracy within ±5%
- Full range line regulation within 1.7%
- Available in SOP-8L package

Product Description

MBI6903 is a high efficiency buck-boost AC/DC controller designed to deliver constant current output. The input voltage range of MBI6903 application is universal from 85VAC to 265VAC. It is featured by a PWM control scheme. MBI6903 is designed to operate with active power factor correction (PFC) circuit and is therefore capable of maintaining system power factor greater than 0.9 with proper design. MBI6903 regulates the output current within ±5% of the preset current by well controlling the external MOSFET. MBI6903 also protects the controller from fault conditions, inclusive of under voltage lock-out (UVLO), over voltage protection (OVP) and over current protection (OCP). To ensure the system reliability, over temperature protection (OTP) is built-in to prevent IC from over temperature (155°C) by turning off the external MOSFET. Once the temperature drops below 125°C, the external MOSFET will resume working. MBI6903 is available in SOP-8L package.

Applications

- T-8 CFL Replacement LED Solution
- E26/E27 Light Bulb Alternative LED Solution
- Flat Panel Lighting Solution
- General Illuminations

Typical Application Circuit

The component selection is made based on the loading of 80V/100mA for AC input 220V. Different settings may require different component selection accordingly.

Fig. 1

C₁: 100nF/450V, metal film capacitor

 C_0 : 47µF/100V, 105°C 8000hrs electrolytic capacitor

D_o: 600V/2A, 35ns superfast diode

D_s: 600V/1A, 35ns superfast diode

D_Z: 51V, 800mW, zener diode

L: 1.5mH, EE13 power inductor

 R_s : 1Meg Ω , 5% resistor (sustaining voltage at least 400V)

 $R_{FB}\!\!:\!2\Omega,\,1\%$ SMD resistor

 $R_{\text{CS}}\text{:}$ 100m $\Omega,$ 1% SMD resistor

 $R_{\text{LP}}\!\!:470\Omega,\,5\%$ SMD resistor

R_{LIM}: 470Ω, 5% SMD resistor

 $C_{\text{DD}}\text{:}\ 2.2\mu\text{F}\text{/}50\text{V},\ X5\text{R},\ ceramic\ capacitor}$

 $C_{\text{EAO}}\!\!:\,1\mu\text{F}/16\text{V},\,X7\text{R}$ ceramic capacitor

C_{comp}: 4.7nF/16V, X7R ceramic capacitor

 C_{LP} : 1µF/16V, X7R ceramic capacitor

Q1: 600V/5A, N-channel MOSFET

Functional Diagram

Fig. 2

Pin Configuration

MBI6903GD (Top View)

Pin Description

Pin Name	Pin No.	Function	
VDD	1	Supply voltage terminal and terminal to execute the over voltage protection	
GATE	2	erminal to drive the gate of the external MOSFET	
CS	3	Terminal to sense LED string current	
EAO	4	Terminal to connect a capacitor to enhance the stability of internal error amplifier	
COMP	5	Terminal to connect a capacitor to enhance the stability of V_{COMP}	
FB	6	Output current feedback	
Reserved	7	Reserved pin*	
VSS	8	Ground terminal for control logic and current sink	
Thermal Pad	-	Power dissipation terminal connected to GND**	

*Keep reserved pin 7 floating without any external connection. Violation of this rule may cause system damage.

**To eliminate the noise impact, the thermal pad should be connected to VSS (Pin No. 8) on PCB. In addition, a heat-conducting copper foil on PCB soldered with thermal pad will improve thermal conductivity.

Maximum Ratings

Operation above the maximum ratings may cause device failure. Operation at the extended periods of the maximum ratings may reduce the device reliability.

Characteristic		Symbol	Rating	Unit
Supply Voltage	V _{DD}	-0.4~44	V	
Sustaining voltage at VCS pin	V _{cs}	7	V	
Sustaining voltage at VFB pin		V _{FB}	7	V
Power Dissipation (On 4-Layer PCB, Ta=25°C)		P _D	3.13	W
Thermal Resistance (By simulation, on 4-Layer PCB)*	GD Type	$R_{th(j-a)}$	40	°C/W
Junction Temperature		T _j , _{max}	150**	°C
Operating Ambient Temperature	T _{opr}	-40~+85	٥°	
Storage Temperature		T _{stg}	-55~+150	°C

*The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51.

** Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.

Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. Users should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

Electrical Characteristics

Test condition: $V_{DD}=22.5V$, $C_{IN}=1\mu F$, $C_{OUT}=1nF$, $T_A=25^{\circ}C$; unless otherwise specified

	Symbol		Min	Typ	Max	Unit
Cildideteristics	Symbol	Conditions		тур	IVIAX	Unit
Supply voltage						
Continuous Operating Voltage	V _{OP}	-	9	-	36	V
Turn-on Threshold Voltage	V_{DD-ON}	-	15	16.3	18	V
(Start-up)						
(UVLO)	$V_{\text{DD-OFF}}$	-	7	8.2	9	V
V _{DD} Over Voltage Protection	V_{DD-OVP}	-	37	-	44	V
Operating Current	I _{DD-OP}	-	-	2.5	4	mA
Starting Current	I _{DD-ST}	The current before start-up voltage	-	25	40	uA
Feedback Reference Voltage						
V _{FB} Accuracy	V _{FB}	-	0.19	0.2	0.21	V
Oscillator						
Oscillator Frequency	f _{osc}	@VDD=22.5V	39	42	45	KHz
Max. Duty Ratio	-	-	-	70	-	%
Current Sense						
Propagation Delay to Gate Output(Turn off)*	T_{PD}	V _{DD} =20V	-	300	-	ns
Max. Leading Edge Blanking	T _{LEB,max}	-	-	500	-	ns
Threshold Voltage for Current Limit	V_{ocp}	-	0.18	0.2	0.22	V
Gate Driver						
Output Low Voltage	V _{OL}	-	-	-	1.5	V
Output Clamp Voltage	V_{Clamp}	V _{DD} >15V	11	12.5	13.5	V
Rising Time	T _R	V _{DD} >15V, C _L =1nF	-	200	300	ns
Falling Time	T _F	$V_{DD} > 15V, C_{L} = 1nF$	-	80	120	ns
Thermal Shutdown						
Thermal Shutdown Threshold	T_{SD}	-	145	155	175	°C
Thermal Shutdown Hysteresis	T _{SD-HYS}	-	-	30	-	°C

* Propagation delay can be defined as time from $V_{Ramp} = V_{EAO}$ to Falling edge of V_{PWM} , which excludes the falling time of gate driver

Test Circuit for Electrical Characteristics

Fig. 3

Application Information

MBI6903 is a universal ac input AC/DC constant current LED driver designed for high power LED applications. This application operates with a buck-boost topology, which provides more flexibility in different input/output design combination to its users with active PFC control. In the application circuit, there are distinct grounds, namely the system ground and VSS. VSS is the reference ground for internal circuit while the system ground is the earth ground. Users should be aware that the system ground and VSS CAN NOT be directly connected together to avoid IC damage and system malfunction.

Start-Up and UVLO (Under Voltage Lock-Out)

When power is on, the voltage imposed on C_{IN} will charge C_S , which is parallel to MBI6903, through R_S . The time for charging up C_S to $V_{Start-up}$ is the start-up time. The $V_{Start-up}$ is designed as 16.3V. MBI6903 is also equipped with UVLO protection. When V_{DD} is below the UVLO threshold of 8.2V (typ.), UVLO starts working and MBI6903 will be disabled, as shown in Fig. 4. The hysteresis of UVLO is 8.2V. Once the input voltage reaches $V_{Start-up}$ again, MBI6903 resumes working and starts regulating the output current to its preset value.

Fig. 4

Setting Output Current

The output current of MBI6903, I_{LED} , can be set via an external resistor, R_{FB} . The relationship between I_{LED} and R_{FB} is as below:

$$R_{FB} = (V_{FB} / I_{LED}) = 0.2 / I_{LED}$$

where V_{FB} is the voltage across R_{FB} , and 0.2V typically.

To enhance the output current accuracy, 1% tolerance is recommended for R_{FB} .

The sustaining power dissipation of R_{FB} is $P_{RFB} = (V_{FB}^2 / R_{FB}) = (0.2)^2 / R_{FB}$ (2)

(1)

OVP (Over Voltage Protection)

When V_{DD} rises above the OVP threshold of 40V (Typ.), GATE is forced low to turn off the external power MOSFET. GATE will not be pulled high until V_{DD} falls below UVLO voltage. This function prevents the driver from suffering high voltage stress and also protects LEDs. The threshold also limits the V_{LED} headroom and LED numbers that can be lit up.

LED Open-Circuit Protection

When any LED connected to MBI6903 is open-circuited, it will trigger OVP to turn off the external power MOSFET, and therefore, no current is supplied to LEDs.

MBI6903 provides LED open circuit protection through preventing output voltage accumulating. At the beginning of an open circuit situation, output voltage may go high, as the voltage feeding into VDD also rises. When VDD voltage reaches the OVP threshold voltage, MBI6903 will disable the gate signal to avoid output voltage from going up further. After VDD voltage drops under UVLO level, the gate signal will resume to function. To further protect LED and MBI6903 from the voltage surge caused by LED open circuit, a TVSo device connected parallel to the output capacitor is also recommended.

LED Short-Circuit Protection

When any LED connected to MBI6903 is short-circuited, MBI6903 adaptively regulates the output current according to the new loading.

When the cascaded LEDs are short-circuited and the output voltage drops toward 0V, VDD will also start to drop. Once VDD voltage is below UVLO threshold voltage, the gate signal will stop working to prevent MOSFET from further switching.

Over Temperature Protection (OTP)

When the junction temperature exceeds the threshold T_{SD} of 155°C, MBI6903 turns off the external power MOSFET. Thus, the junction temperature starts to decrease. Once the junction temperature drops below 125°C, the external power MOSFET will resume its normal operations.

MBI6903

Design Example

The sample design is based on the following specifications.

To light up 22 pieces of high power white LEDs, the forward voltage of each LED is 3.2V. The desired LED current is 100mA, and the input line voltage is $220V_{AC}$. Users should calculate the required components. (The LED is chosen from NICHIA, NS2W123BT)

Output LED Current (I_{LED})

The LED current can be set by R_{FB} . $R_{FB} = 0.2 / I_{LED} = 0.2 / 100mA = 2\Omega$. The power dissipation of R_{FB} can be eliminated, and it is equal to $P_{RFB} = 0.2 \times 100mA = 0.02W$. Therefore, a 1%, 2 Ω resistor with 125mW power dissipation is recommended.

Inductor (L₁)

The inductor (L_1) can be designed by the follow equation:

$$L_1 = \frac{\eta \cdot V_{IN,MAX}^2 \cdot D^2}{4 \cdot P_{LED} \cdot f_S}$$

where

η is the assumed conversion efficiency, $V_{IN,MAX}$ is the peak value of input voltage, **D** is the duty ratio, P_{LED} is the total output power, and **f**_s is the switching frequency.

Since the input line voltage is $220V_{AC}$, the peak value of the input voltage ($V_{IN,MAX}$) is 311V. Assume the conversion efficiency is 80%, the total output power (P_{LED}) is 7W, the switching frequency is 42KHz, and the duty ratio is 18%. According to the above equation and specifications, the L₁ inductance can be calculated, which is equal to 2.13mH.

Also the maximum current $(I_{L1,MAX})$ of L_1 can be estimated by:

$$I_{L1,MAX} = \frac{V_{IN,MAX} \cdot t_{on}}{L_1} = \frac{V_{IN,MAX} \cdot D \cdot Ts}{L_1}$$

where

 t_{on} and T_{S} are the switching-on time and switching period, respectively.

To choose a 2mH inductor to be L_1 , such that $I_{L1,MAX}$ is equal to 0.67A. In this application, the 1A saturation current is recommended to keep a 50% safety margin.

Inductor Current Sensing Resistor (Rcs)

MBI6903 features the cycle-by-cycle inductor current limit through an inductor current sensing resistor (R_{CS}). To set the over-current-protect level at 1A (I_{OCP} =1A), the R_{CS} can be calculated by:

$$R_{CS} = 0.2 / I_{OCP} = 0.2 / 1 = 0.2 \Omega$$

In this application, a 1%, 2 Ω resistor with 125mW power dissipation is recommended.

MBI6903

Power MOSFET (Q1)

In this sample design, the recommended rating voltage of Q_1 is $(V_{IN,MAX} + V_{LED}) \ge 1.2 = 457.68$ V, and the recommended rating current of Q_1 is 1A x 1.2 = 1.2A, individually. Thus, the STD4NK60Z-1 that manufactured from ST with 600V rating voltage, 4A rating current, and 1.76Ω R_{ds(on)} is selected.

Supply Capacitor (C_{DD}) and Charging Resistor (R_s)

For general applications, a 4.7 μ F ceramic capacitor with 50V rating voltage (X7R or X5R) for C_{DD} is recommended. To consider the sustaining voltage of R_S, it is recommended to use two 510k Ω resistors in series as R_S.

Supply Current Limiter (R_{LIM})

In this application, the recommended resistance of R_{LIM} is 100 $\!\Omega.$

Freewheeling Diode (D_0) and Supply Diode (D_s)

In this application, the recommended maximum reverse voltage of D_o is $(V_{IN,MAX} + V_{LED}) \times 1.2 = 457.68$ V, and recommended rating current of D_o is 1A x 1.2 = 1.2A, individually. The recommended maximum reverse voltage of D_s is $(V_{IN,MAX} + V_{DD,OVP}) \times 1.2 = (311 + 44) \times 1.2 = 426$ V, and the recommended rating current of D_s is 100mA. Therefore, the ER2J that manufactured from PANJIT with 600V rating voltage and 2A rating current for both D_o and D_s is selected.

Bridge Diode (D₁, D₂, D₃, and D₄)

In this application, the recommended maximum reverse voltage of the bridge diode is $V_{IN,MAX} \times 1.2 = 373.2$ V, and the recommended rating current of the bridge diode is 42.20mA.Therefore, the B6S that manufactured from PANJIT with 600V rating voltage and 0.5A rating current is selected.

Zener Diode (Z_{DD})

In general, the 43V and 500mW zener diode is recommended.

Compensator Capacitors (C_{EAO} and C_{COMP})

In this application, a 1µF ceramic capacitor (X7R or X5R) for C_{EAO} and a 4.7nF ceramic capacitor (X7R or X5R) for C_{EAO} are recommended.

Zener Diode (Z_{D1})

The Z_{D1} is to shift the OVP threshold of MBI6903 for applications that the output voltage is above 37V. The zener voltage of Z_{D1} is $V_{IN,MAX}$ $V_{LED,MIN} - V_{DS,MAX} - 25 = 44V$. Therefore, a 43V zener diode is selected.

Output Transient Voltage Suppressor (TVSo)

To protect the LED, the output transient voltage suppressor (TVS_O) is needed. The breakdown voltage of TVS_O is $V_{DR,MIN} = V_{LED,OVP} = V_{LED} + V_{DD,OVP} - 25 = 81.4 \text{ V}$. Therefore, an 81V TVS is selected.

Output Capacitor (COUT)

In this application, a 47μ F electrolytic capacitor with 250V rating voltage for C_{OUT} is recommended.

MBI6903

Input Filter Capacitor (C1)

In this application, a 0.1μ F metal-film capacitor with 450V rating voltage for C₁ is recommended.

Gate Discharging Resistor (R_{GS})

In this application, the recommended resistance of R_{GS} is $20k\Omega.$

Low-Pass Filter (R_{LP} and C_{LP})

In this application, a 100Ω R_{LP} and a $4.7\mu F$ C_{LP} are selected.

PCB Layout Consideration

To enhance the efficiency and stabilize the system, careful considerations of PCB layout is important. The following several factors should be considered:

- 1. A complete ground area is helpful to eliminate the switching noise.
- 2. To stabilize the system, a complete V_{SS} area is recommended.
- 3. To avoid the parasitic effect, all component pins should be placed as short as possible.
- 4. High current paths should be as wide and short as possible to eliminate the parasite element.
- 5. To avoid the parasitic effect of trace, please place the C_{DD} as close to the V_{DD} and V_{SS} pins as possible.
- 6. To avoid the parasitic effect of trace, please place the C_{EAO} as close to the EAO pin as possible.
- 7. To avoid the parasitic effect of trace, please place the C_{COMP} as close to the COMP pin as possible.
- 8. To avoid the parasitic effect of trace, please place the C_{DIM} as close to the DIM pin as possible.
- 9. To avoid the parasitic effect of trace, please place the R_{CS} as close to the CS pin as possible.
- 10. To avoid the parasitic effect of trace, please place the low-pass filter $R_{LP and} C_{LP}$ as close to the FB pin as possible.
- 11. Besides VSS area, please do not place any components or other electricity trace under the thermal pad of MBI6903.

Package Power Dissipation (PD)

The maximum power dissipation, PD(max)=(Tj-Ta)/Rth(j-a), decreases as the ambient temperature increases.

Soldering Process of "Pb-free" Package Plating*

Macroblock has defined "Pb-Free" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245 °C to 260°C for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ 2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
2.5mm	250 +0 °C	245 +0 °C	245 +0 °C

*Note: For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

Outline Drawing

MBI6903GD Outline Drawing

Note: Please use the maximum dimensions for the thermal pad layout. To avoid the short circuit risk, the vias or circuit traces shall not pass through the maximum area of thermal pad.

Product Top Mark Information

GD(SOP-8L)

Product Revision History

Datasheet version	Device Version Code
V1.00	A

Product Ordering Information

Part Number	RoHS Compliant Package Type	Weight (g)
MBI6903GD	SOP8L-150-1.27	0.07g

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.